• 08:55 – 09:15

Keynote

MEMS inertial sensors for navigation applications

Northrop Grumman LITEF started the development of micro-electromechanical systems (MEMS) gyroscope chips with Deep Reactive Ion Etching (DRIE) in 2003. Based on this technology, a six degree of freedom MEMS IMU was developed for navigation applications. After successful transfer from early MEMS IMU prototypes to series production, NG LITEFs IMU is available since many years with a specified bias error of 4 deg/h and an angular random walk (ARW) of 0.15 deg/sqrt(h) over temperature. Recently an European Technical Standard Order (ETSO) for the MEMS based Attitude Heading Reference System (AHRS) LCR-350B was received, so that NG LITEF is able to supply the first purely MEMS based AHRS worldwide to the avionic helicopter and fixed-wing market. Next generation avionic systems require even higher performing MEMS sensors. Northrop Grumman LITEF is addressing these needs with the next generation MEMS sensors.

Stefan Rombach

Head of MEMS

Northrop Grumman LITEF GmbH

Stefan Rombach received the Phd. degree in microsystems engineering from the University of Freiburg, Freiburg, Germany. He was working as a member of the scientific staff at the chair of microelectronics in the field of readout interfaces for MEMS inertial sensors and MEMS micro-mirrors based on low-power system design and Delta-Sigma modulation. Since 2018, he has been with Northrop Grumman LITEF, Freiburg, Germany, where he is working as Head of the MEMS department in the field of inertial sensor systems development.

View Full Profile

LITEF is one of the leading companies in the development and manufacturing of navigation and sensor systems. The company’s expertise is based on German technology for mechanical, fibre optic and micromechanical inertial sensors. This enables ITAR-free distribution of LITEF products around the globe.
Founded in 1961 and headquartered in Freiburg im Breisgau (Germany), the company’s product range includes MEMS sensors based inertial measurement units, attitude and heading reference systems, inertial navigation systems and inertial reference systems. In close dialogue with the customer, specific product solutions are developed for measurement and navigation tasks with maximum precision and reliability requirements.

View Full Profile