Members Only

Sorry ISES TV videos are exclusive to ISES Members

For access please either login to your membership account or visit our Membership page to sign up for ISES membership.

ISES TV –

Process Control Trends for WBG Power Devices

The automotive industry is continuing its secular shift towards more electrification, computing, and automation.

Consequently, both the number of semiconductors used in automotive, and their complexity are rapidly growing to support new applications. The very high standards for automotive reliability are requiring the adoption of advanced process control and inline screening methodologies.

An additional challenge in automotive electronics is the introduction of wide bandgap (WBG) materials, like silicon carbide (SiC) or gallium nitride (GaN), which are essential to the proliferation of electric vehicles because of their improved power efficiency over silicon.

I will start my presentation by outlining the yield challenges that WBG power manufacturers face while ramping production to meet industry’s skyrocketing demand. Low yield is impacting both fabrication costs and product reliability and can pose a serious threat to the EV adoption in the market.

A high amount of manufacturing costs and yield loss comes from the substrate and epitaxy processes, even before device fabrication starts, so process control for these initial steps is very critical and requires specialized inspection and metrology tools.

During the device fabrication, new processes are introduced, like SiC trench etch, which requires innovative process optimization as well as advanced metrology capability.

Moreover, the adoption of Inline Part Average Testing (I-PAT®), which has already been introduced on silicon-based automotive chips, is expected to increase during SiC device manufacturing to mitigate reliability concerns derived from low yield and substrate immaturity.

Finally, new wafer singulation, such as plasma dicing, and bare die inspection will be needed to limit the occurrence of edge die cracks and delamination issues caused by the current mechanical and/or laser dicing technologies.

Keywords: Electrification, Yield, Reliability, Inline Screening, Silicon Carbide

Oreste Donzella photo

Oreste Donzella

Executive Vice President and Chief Strategy Officer

KLA